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The Frontier orbital approach,1 well-known for providing 
improved understanding of chemical reactivity, has been reju­
venated2 through reinterpretation and rationalization within the 
framework of density functional theory (DFT).3'4 We here 
demonstrate that the DFT-based frontier orbitals can play an 
important role also in the prediction of a number of ground state 
atomic properties such as polarizability, hardness, electronega­
tivity, and covalent radius, which have attracted considerable 
attention5 recently. 

The single-particle framework used here for obtaining the 
highest occupied (HOMO) and lowest unoccupied (LUMO) 
frontier orbitals is the orbital-based spin-polarized version of DFT, 
where one solves the single-particle Kohn-Sham3-4 equation given 
by (in atomic units) 

t-(l/2)V2 + y r ; | p j ) ] i ( r ) = e ^ , ( r ) (1) 

to obtain the electron density p(r) = Ii,ffPf„(r) = Zi,J^iC(f)\2 for 
an iV-electron system. In this self-consistent procedure, the 
effective potential, vttt(r;\p,}), is contributed by the potential due 
to the nuclei, the electron cloud, and also the exchange-correlation 
(XC) effects. 

Although it is the total density p(r) which has been proved3 

to contain all information in DFT, it may be argued that using 
the spin orbital ^(„(r), even only for the HOMO, one can fix the 
effective potential appearing in eq 1, which in turn determines 
all the orbitals. Hence it might be possible to conjecture that 
even only the HOMO density (for real orbitals) should be sufficient 
to determine all the ground state properties. For noninteracting 
fermions involving simple potentials, it is even possible6 to express 
p(r) explicitly in terms of the frontier orbital (HOMO and 
LUMO) densities. This prompts us to attempt to propose suitable 
schemes to predict various properties using the HOMO/LUMO 
frontier orbitals corresponding to a single Kohn-Sham calculation 
for the neutral atom. 

For an atom subjected to an oscillatory electric field, the 
frequency-dependent polarizability a(o>), corresponding to the 
induced dipole moment, can be expressed,7 neglecting inhomo-
geneity effects, as 

«(«) = -(8/co2) J*0"dr r J ^ d r V j'dq p(/-0 X 

sin(gr) sin(grO«_1 [q,w,p(r)] (2) 

where e is the frequency (o>) and wavenumber (q) dependent 
local dielectric function, which can be approximated using the 
local Drude ansatz,7 as t(r) - [1 - ^(r) / oi1], and hence the 
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polarizability given by eq 2 becomes a(w) = /dr p(r)/ [a>o2(r) -
a>2]. Here a>o(r) is a suitable characteristic local frequency, which 
can be chosen7 to be the single-particle frequency Usp(r) defined 
as a>,p

2(r) = (1 /r) (d V/dr) in terms of a local potential V{r). With 
these approximations and writing V(r) = (Z/r)4>(r), where Z is 
the nuclear charge of the atom, the static (to = 0) polarizability 
is given by a = (l/Z)J"dr p(r)r3/[\[/{r) - r<j/{r)]. For a neutral 
atom, [p(r)/Z] = [p(r)/N] represents the density normalized to 
unity, and we propose to replace this quantity by PHOMOW (an 
effective HOMO density). The screening function \f/(r) ap­
proaches unity as r —• 0 and Z-1 as r —• ». For simplicity, we 
replace \j/(r) by a constant which can be interpreted as the use 
of mean value theorem to take the function involving \f/(r) outside 
of the integral and hence obtain the simplified expression for 
polarizability a given by 

a = ka Jdr PHOMOW''3 = M'3>HOMO (3) 

where ka is an empirical constant. 
It is also possible8 to express the polarizability in terms of the 

expectation values using the Fukui function1-4 or the HOMO 
density as a = (l/6?j)J*dr r2 PHOMOM. where j] is the hardness 
parameter defined9 as r, = (1/I)(S1E/'BN1). This clearly 
demonstrates an inverse relation between hardness9 and the 
polarizability, and a comparison with eq 3 enables one to express 
•n in terms of the ratio of two expectation values, viz., 

V = V ^ H O M O / ^ H O M O <4) 

where fc, is an empirical constant. An inverse relation has also 
been demonstrated5"1 between the cube root of polarizability and 
the electronegativity10 x = -(dE/dN). Thus we propose in view 
of eq 3 a relation for the calculation of electronegativity given 
by 

X = VK'3>HOMO]1 / 3 (5) 

We now consider the classical electrostatic potential11 (ESP) 
4>.{f) = ZIr - /dr" p(r0/|r - r'l of an atomic negative ion, which 
is positive near the nucleus, but crosses to negative values as r 
increases, finally passing through a negative minimum. While 
the position of this minimum has been identified11 with the ionic 
radius of the negative ion, we conjecture that the crossing point 
of the same ESP <p-(r) can provide an estimate of the covalent 
radius (R0) of the corresponding neutral atom. For simplicity, 
we propose to mimic the negative ion electron density by adding 
to the neutral atom electron density an effective LUMO density 
corresponding to a suitable combination of a few LUMOs of the 
neutral atom. From #_(/•) corresponding to this density, R0 is 
determined by the solution of the equation <t>-(Ro) = 0. At r = 
R0, the ESP of the neutral atom is equal to the Coulomb potential 
due to the effective LUMO charge density, which is obtained 
here as the average of the two lowest unoccupied orbital densities 
(e.g., n pj and (n + 1) s\ orbitals when the highest occupied one 
is n pt or partially filled n pj). 

We have solved the Kohn-Sham equation (1) with local spin 
density approximation12 for the XC potential for a number of 
atoms (main group elements). The polarizability, hardness, and 
electronegativity values are then calculated through eqs 3,4, and 
5, respectively, using simple expectation values in terms of the 
HOMO densities. The empirical constants ka, k„, and kx are 
obtained by minimizing the standard deviations between the 
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CALCULATED POLARIZABILITY 

Figure 1. Plot of experimental vs calculated values of atomic polarizability 
(in atomic units). 
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Figure 2. Plot of experimental vs calculated values of atomic hardness 
and electronegativity (in eV). 

experimental and calculated values of the respective quantities 
for the atoms considered. 

For the calculation of polarizability, we obtain < r3) HOMO using 
an effective HOMO density, since the contributions from per­
turbation of all the outermost orbitals are expected to be signi­
ficant. For this purpose, we first take the average of the up- and 
down-spin results for each orbital and then use an occupation 
number weighted average of the outermost s and p orbitals. The 
plot of the experimental polarizabilities13 against the calculated 
ones (with ka = 1.48) in Figure 1 shows excellent agreement. A 
linear least squares fit of the two results corresponds to a 
correlation coefficient of 0.997. (It may be noted that lines drawn 
in the figures here correspond to perfect agreement and not least 
squares fit.) 

For the calculation of hardness and electronegativity, we have 
used only the outermost HOMO. This is motivated by the fact 
that the change in occupation number due to change in Ninvolves 
mainly this HOMO (e.g., in the frozen core approximation). The 
hardness values calculated using eq 4 with the parameter £„ as 
0.50 plotted against the experimental values4 (obtained from 
ionization potential and electron affinity data) in Figure 2 show 
good agreement. The electronegativity values obtained from eq 
5 also agree very well with the experimental values4 plotted in 
the same figure. The correlation coefficients corresponding to 
a linear least squares fit for TJ and \ are 0.959 and 0.974, 
respectively. It is interesting to note that the optimum value 0.54 
of the empirical constant kx is very close to that of kv (=0.50). 
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CALCULATED RADIUS 

Figure 3. Plot of standard covalent radius vs calculated radius of atoms 
(in A). 

The values of the radii calculated through the present scheme are 
plotted in Figure 3 against the standard values of covalent radii 
from the literature.14 There is no empirical parameter for the 
radius, and the correlation coefficient of a linear least squares fit 
is 0.980. The estimates of the negative ion radii from the positions 
of the minima of the present #_(/•) also agree quite wellSb with 
those obtained1' from the exact ESP of the respective ions. (The 
inert gas atoms have been excluded for JJ, x. and R0.) 

Although the present calculations cover only the main group 
elements, the formalism is general and is applicable to transition 
elements as well. The effective HOMO density for polarizability, 
however, is to be obtained by averaging the highest occupied d 
orbital (which is close in energy) with the ones already mentioned. 
It may also be noted that even the SCF orbitals from wave function 
theory can be employed in the present prescription to obtain 
qualitatively similar results. Of particular interest is the ap­
plicability of the scheme to the case of the hydrogen atom. Using 
(r3) = 7.5tfo3and (r2) = 3ao2 corresponding to the exact Is orbital 
density, the predicted values of i\ and x agree very well with the 
actual results. The calculated value of a is, however, somewhat 
overestimated, which might be attributed to the fact that an 
effective HOMO density is not employed here. 

DFT has been well-known for its success in providing foundation 
to many widely used chemical concepts including electronega­
tivity4 and hardness.15 It has also led to generalized electrone­
gativity equalization procedures16 for the study of chemical binding 
in molecular systems. In the present work, through simple 
expectation values involving the frontier orbitals of DFT, quite 
good prediction for several global atomic properties has been 
shown to be possible. Although alternative (DFT-based) pre­
scriptions have been proposed for polarizability,8 hardness,17 and 
the radius,18 the predictions of the present approach involving the 
frontier orbitals and requiring only a single calculation for the 
neutral atom show better correlation with the standard results. 
Extensions of the present schemes to atomic clusters and molecular 
systems are straightforward and would be of considerable interest. 
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